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    4. Long Wave 

 
4.1  Long Wave Assumption 
Let us consider  “a long wave,” that is, a wave in which the wavelength L  is 
sufficiently long as compared with the depth D : DL >> .  The non-vortex condition 
is then written as 
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 Definite integration with [ ]Dy −,η   of (1) yields 
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Hence, the relative difference in horizontal particle velocity  is 
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From the discussions in the previous chapter, we already know that [ ] η=yuv  has a 

maximum of unity; hence, the condition DL >>  implies that the difference between 
)(ηu  and )( Du −  is relatively small, even if the absolute value of )(ηu  is not always 

small.   
   Thus, we can consider that if the long wave condition is satisfied, the horizontal 
particle speed is approximately a constant. 

   For three-dimensional wave problems of long waves, we can also assume that the 
horizontal components of the water particle velocity are constant.  
      
4.2 Long Wave Problems of Three-Dimensional Case 
(a) Mass Conservation Equation  

   Next, let us consider three-dimensional long wave problems.  We set the origin of a 
rectangular co-ordinate system as a point on the stable sea surface, and take the x - 
and y -axis horizontally (for example, the x -axis in the eastward direction, and the 
y -axis in the northward direction); the z -axis is taken perpendicular to the x- and 

y-axis. The mass conservation law is expressed as  
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By performing a definite integration of (4) w.r.t. z within the region [ ]Dz −= ,η , we 
have 
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and )(Bw  are the vertical components of the particle velocity at the sea surface and 

bed, respectively. 
   The kinematic sea surface and the sea bed conditions are expressed as 
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 Let us assume that the depth D  does not change with time; (7) then becomes 
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   By substituting (6) and (8) into (5), we have  
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(Note: (5-6) are satisfied only at the sea surface ( η=z ), and (8) is satisfied only on the 

sea bed ( Dz −= ).  However, there are no z-dependent terms on the right-hand sides of 
both (5-6) and (8), and hence, we can consider that equations (6) and (8) are satisfied 
generally at any depth. Hence, no boundary condition is given in equation (9). 
Equation (9) is the mass conservation condition for a long wave.  Note that 
non-linearity is not assumed in its derivation. 
 
(b) Equations of Motion 

 Since Bernoulli’s formula is satisfied at any point in a liquid, at the position (x, y, z), 
it has the following form: 
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Further, the equation has the following form at a point on the sea surface: 

    )()(
2
1

0
22 tFPgvut =++++− ηφ                            (11) 



 

29 

Here, 0P  denotes the atmospheric pressure and is assumed to be a constant. 
Subtracting (10) from (11), we have 
      )(0 zgPp −=− ηρ    (12) 
This shows that the pressure distribution takes the same form as that of the case of 

static pressure for no motion.  On the other hand, the equation of motion in the 
x-direction is given by 
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Comparing (5-12) and (13), we have 
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Similarly, we have the equation of motion in the y-direction as 
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   Note that we have used only the long wave assumption until now and have not 
used the non-linear assumption.   
 
( c )  Linear approximation 

  Next, we consider dropping non-linear terms.  We introduce flow ),( yx qq  as the 

integrated value  of the particle velocity ),,( vu . Therefore, 
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Equation (9) is then expressed simply as follows: 
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It is possible to rewrite equations (5-14) and (5-15) in the following manner by using 

yx qq ,  with a non-linear approximation: 
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We differentiate (17) with respect to t, and substitute (18) and (19) in it; we then have 
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Equation (20) is the long wave equation governing many problems in the studies on 
tsunami and storm surge. Note that we did not assume uniform depth in deriving (20), 
and hence, (20) is applicable for long waves propagating in seas with non-uniform 
depths. 
    In the case of a sea with a uniform depth, (20) can be re-written as follows: 
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This is similar to the equation of wave motion, and the wave velocity c is given by 

       gDc =                                               (22) 

 
4.3  Long waves entering a V-shaped bay 
   We next consider the mechanism of a wave entering a V-shaped bay, as shown in the 
figure. 
The innermost point is assumed to be the origin and the x-axis considered to be along 
the centerline of the bay extending toward the bay mouth. 
  We consider the problem to be a one dimensional in nature, and the width b is given 

by axb =                             

 
 Fig 1. Tsunami wave going into a V-shaped bay 
(Case  A)  A bay of constant depth 
  The equation of motion is given by 
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 The water pressure is the same as the static pressure as follows: 
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   )( zgp −= ηρ                                           (24) 
We substitute (24) into (23), and we have 
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The equation of mass conservation is (“flow” can be defined as ubDxq ≡)( ) 
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Since the width b of the bay is given by axb = , we have 
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By eliminating u from (26) and (27), we have  
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Here .2 gDc =  Now, we substitute tiexZ σς −= )( , and (28)  becomes 
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This equation (4-29) is the Bessel’s function of the zero-th order. 

[Mathematical notes] 
I recommend that you regard the Bessel function as a cosine function with the 

amplitude attenuating proportional to １／ x , that is,  

     x
x

xJ cos1)(0 =                                         (30) 

（this does not result in a significant difference from exactness）. By doing this, you can 
easily understand the characteristics of a Bessel function. 
Neumann function is a sin function with the amplitude attenuating proportional to 
１／ x , that is,  

 x
x

xN sin1)(0 =                                           (31) 

It is well known that ixe  and ixe−  is defined by the formula 
xixeix sincos += , xixe ix sincos −=−  

Analogically, we introduce 
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This is called the Hankel function of the first kind, and is written as )()1(
0 xH . Similarly, 

we define 
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as the Hankel’s function of the second kind, and we write it as )()2(
0 xH .  

[Conclusion] Thus, Bessel and Hankel functions )2(
0

)1(
000 ,,, HHNJ  are 

ixix eexx −,,sin,cos  with their amplitude attenuating proportionally with x2. 
Hopefully, your “Bessel function allergy” must be cured by now. In exact terms, 

Bessel’s functions should be written as  
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However, both the constant coefficient π2 and the phase shift 4/π  are not 

essential. 

The solution of (30) can be rewritten as  

{ } )(,,,)( )2(
0

)1(
000 kxHHNJxZ =                                  (30’) 

We can freely select any linear  combination of two functions out of four  in ｛｝, similar 

to the way in which the solution of 09 =+′′ yy  is written as 
{ }ixix eexxy 33 ,,3sin,3cos −= . 

  Since the incoming wave moves in the negative x-axis direction,  the solution must 
contain the factor )( tkxie σ+−  . Hence, we select a function that contains the factor 
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Further, this is a Hankel function of the second kind. Hence, we finally 

decide the (exact) solution of the present problem as  
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Question:  What type of waves are indicated by the form of the following solutions: 

tiekxAH ση −= )()1(
0                                            (31-b) 

tiekxAJ ση −= )(0                                             (31-c)  

and  

     tiekxAN ση −= )(0                                             (31-d) 
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 Equation (31-a)  shows that the amplitude of the long wave (a tsunami) is inversely 
proportional to the square root of the distance from the innermost point.  Further, the 
energy of the waves changes proportionally with the square of the amplitude. It is 
natural the amplitude is inversely proportional to the distance from the origin because 
the change in energy density is inversely proportional to  the distance from the original 
point in the present case. 
    
（Case Ｂ）A long wave entering a V-shaped bay of a sloping sea bed 
 Next, we consider the case of a long wave entering a V-shaped bay, where the depth 
changes linearly from the innermost point. 
 [Solution] If the width is given by ,axb =  and the depth is given by mxD = , 
then we finally obtain   
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[Students’ Homework]  Derive (32) and solve it. 
［Hint］ The solution of  
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is given by the linear combination of the following Bessel’s functions 
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[Suugaku-Koshiki, Tables of Mathematical Formulae, Iwanami, vol. 3, p161] 
［Case C］ 
Problem: Constant width (a rectangular bay) and the depth changing linearly as 

mxD = .  Show the following result for this case. 

    tiexkH ση −= )2()2(
0                                           (35) 

Why the function should be selected Hankel’s function of the second kind, and we 

should neither select Bessel’s function )2(0 xkJ or Hankel’s function of the first kind 

)2()1(
0 xkH . 

［Case D］ Exiting wave  
   This is the case that the wave source is in a small bay on a straight line coast,  and 
the waves leave the shore from the bay mouth.  If the depth of the open sea is a 
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constant, the radiated wave is expressed as 
 

       tiekrAH ση −= )()1(
0                                             (36) 

Prove that (36) is a solution of an exiting wave of this case 
 
 
4.4 Numerical Calculation of the Propagation of a Long Wave (a Tsunami) 
   

Tsunami propagation (simulation) is studied numerically by integrating three 
equations, (17)-(19), with respect to time considering sea bottom friction. 
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The second terms of (38) and (39) express the influences of bottom friction, and cf  is 
a dimensionless value of the friction coefficient on the sea bed, which generally has a 
value ranging from 0.005 to 0.03.  This term can be neglected at the sea area where the 
sea depth D  is larger than 100 m.  

 The third terms in (38) and (39) are the terms for the non-linear effects, which can be 

also neglected in a deeper sea area where the ratio of the amplitude to the depth D/η  

does not exceed a few percents. 
(a) Initial conditions given for a numerical calculation of a tsunami propagation 

model 
If we obtain a set of fault parameters of a submarine earthquake, we can calculate the 
distribution of the vertical component of the sea bottom deformation, or the vertical 
crustal motion At an initial time ,0=t  we give the distribution of the sea surface 
displacement η  the same pattern as the sea bottom deformation. 

(b) 0, =yx qq  at the initial time. 
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(c) We select a time interval τ and rewrite (3-58) through (3-40) to a set of difference 
equation , and by applying the “leap frog method ”,  we obtain 
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where l∆  is the size of the grid interval. 
By applying this method, we can numerically calculate the propagation of 

tsunami waves.  
 In real situations, we must consider two additional factors:  

 (1) Selection of the time step τ, and 
       (2) Two types of area boundaries: 
             2-1.  Coast line boundary 
             2-2.  Open boundary 
(1) Selection of the time interval τ 
   For performing numerical calculations, we must consider the stability 
condition of the process of numerical calculation of a “leap frog type” method,which is 
called CFL condition: the time interval τ should not exceeded the following limit: 

     max2/ gDl∆≤τ                                        (42) 

Here, maxD  is the maximum depth in the considered sea area. 
(2) Area boundaries 

 
2-1.  Coast line boundary 

  This condition can be realized by using 0=xq  or 0=yq  at the coast line 

boundary, or by substituting 

    jiji ,,1 ηη ≡+                                            (43) 

where  ),1( ji +  is the grid beyond the coast line.  If we do this, the boundary 
plays the role of a mirror surface, and the perfect reflection condition will be 
satisfied.  
 
2.2.  Open boundary 
  We should set a free exiting wave condition artificially at the free boundary, 
where we should make the wave leave the area naturally.  In order to satisfy this, 
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we give the equation of the flow as follows: 

     22
yx qgDq −±= η                                  (44) 

for east (+) or west (–) boundaries, and  

     22
xy qgDq −±= η                                  (45) 

for the north (+) or south (-) boundaries. 
 [Note]  We first consider the one-dimensional case: waves move eastward in a uniform 
depth channel 
   The equation of motion is given as follows: 

           x
g

t
u

∂
∂−=

∂
∂ η

                                  (46) 

Further, the equation of mass conservation is given as follows: 
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Eliminating u , we have 
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This is an equation of wave motion of the one-dimensional case and has the following 
solution: 

        )()( 21 ctxfctxf ++−=η                          (49) 
Here gDc =2 . 
We already had studied that )(1 ctxf −  is the right (or eastward)  wave component 
and )(2 ctxf +  is the leftward wave component.   If we consider only the component 
of an eastward wave, it satisfies 

       )(1 ctxf −=η ．                                   (50) 
We note that (5-48) is the solution of the following partial differential equation. 
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Along with (51) and (47), we have 
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This is integrated with respect to x and becomes simply (note that )xqDu =  
        ηcqx =                                                (53) 
This is the condition of a freely exiting wave toward the eastern boundary.  
If the direction of wave propagation is oblique to the boundary, we should re-write (5-51) 
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as follows: 

       ηcqqq yx =+= 22                                       (54) 

It is possible to derive (44) and (45) from equation (54). 
 

(3)  Influence of the curvature of the Earth’s surface 
If the size of the calculation area does not exceed 1000 km × 1000 km, then we can 
neglect the influence of the curvature of the Earth’s surface. However, if the size of the 
calculation mesh grid exceeds 1000 km, the influence of the Earth’s surface should be 
considered.  For such a case, instead of the set of equations (38) through (40), we can 
use the following set of equations: 
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where F is Coriolis’ coefficient  having a value of φπ sin)246060/(4 ×××   and λ and 
φ  are the longitude and latitude of each grid, respectively; R is the radius of Earth.  

For such a large-scale grid, we cannot neglect the influence of the rotation of the earth. 
The mass conservation equation is given by 
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(4)  Calculation of grid nesting 

What should the size of the grid mesh be for performing numerical calculations of the 
propagation of a tsunami wave?  Shuto (1984) conducted several numerical 
experiments and concluded that we should prepare more than 20 grid points for one 
period of a wave.   
   In such a case, we should prepare finer meshes for shallower sea regions than for 
deeper ones because, the wavelength becomes shorter in inversely proportion to , the 
square root of the depth (Why?). 
Thus, we prepare several sets of nesting meshes, with the finer ones being for shallower 
regions. 

In general, a grid interval of 1 km mesh for a deeper sea, 0.5 km for the shelf area, 
0.25 km, 0.125km for the sea area approaching a tide gauge port, 62.5m for the 
coastal area are used.  


